Journal Abbreviation : ‘J. Odor Indoor Environ.’ Frequency : Quarterly Doi Prefix : 10.15250/joie. ISSN : 2288-9167 (Print) / 2288-923X (Online) Year of Launching : 2014 Publisher : Korean Society of Odor Research and Engineering & Korean Society for Indoor Environment Indexed/Tracked/Covered By :
Odor dispersion simulation around an isolated building using the SST k-ω model
Kyung Jin Kim1, Jin-Seok Han2, Bu-Joo Gong2, Sang Jin Jeong3*
1Graduate School, Kyonggi University 2National Institute of Environmental Research 3Department of Environmental and Energy Engineering, Kyonggi University
In this study we investigated odor (hydrogen sulfide) dispersion around a cubic building by using commercial FLUENT CFD code. The FLUENT Shear-Stress Transport (hereafter SST) k-ω turbulence model was used to simulate odor dispersion from an odor source. The results were compared with a wind tunnel experiment and other simulation results. SST k-ω turbulence model provided good grounds for making reasonable predictions about the building surface concentrations and concentration profiles of selected leeward positions of the cubic building. It was found that a vent, which was positioned 7 m above the top of the square building center, decreased the plume length lower by 0.73 and increased the plume height by 1.43 compared to roof top vents. It was also found that by increasing the vent height there a corresponding decrease in the maximum dimensionless concentration around the roof surface.