Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 2288-9167(Print)
ISSN : 2288-923X(Online)
Journal of Odor and Indoor Environment Vol.18 No.1 pp.44-54
DOI : https://doi.org/10.15250/joie.2019.18.1.44

Absorption comparison of absorbents to remove volatile organic compounds emitted from printing and publishing industry

Jeonghee Yun,Yoonjoo Seo,Shi-nae Jang,Kyung-Suk Cho*
Department of Environmental Science and Engineering, Ewha Womans University
*Corresponding author Tel : +82-2-3277-2393 E-mail : kscho@ewha.ac.kr

Abstract

This study was conducted to determine the absorption properties of silicone oil, liquid paraffin, and silicone rubber as absorbents for hydrophobic volatile organic compounds (VOCs) mainly emitted from the printing and publishing industry through VOCs absorption efficiency and partition coefficient. Also, changes in absorbability were tested through blending of absorbents and load of target VOCs mixtures. The results obtained can be used as fundamental data to choose an appropriate absorbent. All of the three absorbents showed an excellent absorption efficiency of above 98% for each 5 wt% load of the target VOCs including toluene, xylene, methyl ethyl ketone (MEK), isopropyl alcohol (IPA), 1,2,4-trimethylbenzene (124-TMB), and n-Nonane. In terms of toluene load, all absorbents showed good absorption efficiency of above 95% to a high load of 15 wt%. The air-absorbent partition coefficient of each target compound (P value) exhibited the highest value of 9.8 × 10−5 for 124-TMB in silicone rubber and the lowest value of 1.6 × 10−2 for IPA in liquid paraffin. These results indicate that the target VOCs had high affinity for the three absorbents. Absorption efficiency for the target VOCs at various absorbent blending ratios using three kinds of absorbents was improved to 99.9% regardless of the absorbent type or blending ratio. This result suggests that the shortcomings of single absorbents can be overcome through absorbent blending, enabling cost reduction and applicability to a dry-type treatment process. In treatment for mixture of the target VOCs to mimic an actual VOCs treatment, the absorption performances of silicone oil showed an absorption efficiency of 99% for 16 wt% of total VOCs load. These results indicated that silicone oil could be considered as a good absorbent.

인쇄출판업 배출 주요 휘발성 유기화합물 제거를 위한 흡수제의 성능 비교

윤정희,서윤주,장시내,조경숙*
이화여자대학교 환경공학과

초록

Figure

Table